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Abstract
Background: Many of the functional units in cells are multi-protein complexes such as RNA
polymerase, the ribosome, and the proteasome. For such units to work together, one might expect
a high level of regulation to enable co-appearance or repression of sets of complexes at the
required time. However, this type of coordinated regulation between whole complexes is difficult
to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology
that is able to detect such higher order relationships.

Results: We detect coordinated regulation of multiple protein complexes using logic analysis of
gene expression data. Specifically, we identify gene triplets composed of genes whose expression
profiles are found to be related by various types of logic functions. In order to focus on complexes,
we associate the members of a gene triplet with the distinct protein complexes to which they
belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For
example, we may find that the transcription of complex C is increased only if the transcription of
both complex A AND complex B is repressed. We identify hundreds of examples of coordinated
regulation among complexes under various stress conditions. Many of these examples involve the
ribosome. Some of our examples have been previously identified in the literature, while others are
novel. One notable example is the relationship between the transcription of the ribosome, RNA
polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi.

Conclusions: The analysis proposed here focuses on relationships among triplets of genes that
are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By
grouping gene triplets, we are able to decipher coordinated regulation among sets of three
complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome, we
derive a large network involving this essential cellular complex. In this network we find that all
multi-protein complexes that belong to the same functional class are regulated in the same
direction as a group (either induced or repressed).
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Background
In recent years, systematic experimental studies, such as
those using TAP tag Mass-Spec techniques, have provided
a draft map of yeast multi-protein complexes [1,2]. This
map shows the composition of the quaternary protein
structures in this model organism. The next challenge is to
uncover which complexes work together to perform par-
ticular cellular tasks. One way to accomplish this is to
detect the synchronized regulation of multi-protein com-
plexes.

Coordinated regulation may be defined as a synchronous
pattern of increased or reduced mRNA transcription of
several cellular multi-protein complexes in response to a
given perturbation. Such coordinated regulation of com-
plexes is found when cellular function requires several
complexes to be co-expressed or when other complexes
need to be repressed for a given complex to function. For
example, to achieve proper initiation of the translation
process in eukaryotes, numerous cellular multi-protein
complexes are regulated in a coordinated fashion. In this
process, the initiation factor complexes eIF2, eIF3, and the
cap-binding protein complex (eIF4f) associate to bind the
ribosomal small subunit complex (40S) (reviewed in [3]).
Another example involves the TOR complex 1 (Target Of
Rapamycin), a conserved Ser/Thr kinase that regulates cell
growth and metabolism in response to nutrients and
stress. When nutrients are available, TOR activates com-
plexes related to ribosome biogenesis, translation and
nutrient import. In contrast, starvation inhibits TOR activ-
ity, thereby inducing various cellular responses such as
cell arrest in the early G1 phase, inhibition of protein syn-
thesis, nutrient transporter turnover, transcriptional
changes, and autophagy. These responses are all mediated
by multi-protein complexes [4,5].

Intricate relationships among genes and groups of genes
(multi-protein complexes) are not captured by simple
pairwise correlations; rather, higher order analysis is nec-
essary to derive more detailed relationships. In the past
few years diverse methods, such as binary and Bayesian
networks, have been developed to derive gene networks
(reviewed in [6]). However, these approaches aim to
detect co-regulated expression modules among individual
genes, while methods to detect co-regulation among
groups of genes, such as multi-protein complexes, still
need to be developed. In the present study, we apply logic
analysis to gene expression data to identify gene triplets
related by various types of logic functions [7]. Next, we
combine these to study coordinated relationships among
multi-protein complexes.

Logic analysis is a method to relate triplets of genes/pro-
teins by certain logic functions based on genomic data. All
eight possible logic functions among triplets of genes can

be found in Figure 1 and Additional file 1: Table S1. The
triplet logic approach was introduced by Bowers et al. [7]
and applied to genomic data in the form of phylogenetic
profiles (described in [8]). Subsequently, logic analysis
was also applied to find relations between the expression
of two genes and disease state phenotypes [9]. In the cur-
rent study, logic analysis is extended and modified for
application to gene expression data. The original
approach assigned a binary value (0 or 1) to a gene for
each organism or gene expression experiment. In this
work we use a three state model that describes genes as
induced, repressed, or non-regulated. We construct two
separate regulatory state vectors for each gene, where one
vector describes whether a gene is induced or not over the
set of experiments, while the other describes whether the
gene is repressed or not (Figure 2). These vectors are then
used to identify gene triplets whose regulation obeys logic
functions [7]. For example: gene C is induced/repressed if
and only if (iff) gene A is induced/repressed and gene B is
induced/repressed. We also introduce a P-value for each
gene triplet that quantifies the likelihood of obtaining this
triplet by chance (see Methods). Next we grouped genes
with the same logic function that mapped to the same set
of three multi-protein complexes. This type of grouping
enables us to infer how the coordinated regulation of
these complexes occurs in the cell (Figure 1).

To explore the utility of our approach, we applied triplet
logic analysis to yeast microarray data that measures the
response of gene expression levels to environmental
changes [10]. We identified genes whose regulation obeys
triplet logic functions, and mapped these genes to distinct,
multi-subunit complexes to infer coordinated regulation
between the complexes. Among the many complexes
inferred to have coordinated regulation, we discuss exam-
ples related to the biogenesis of the ribosome and support
them with known regulatory data. In addition, we derive
a cellular network of all complexes that have different tri-
plet relationships with the ribosome. This network reveals
that in stress conditions, all complexes belonging to the
same functional classes are regulated in the same direction
(induced/repressed). This observation may suggest the
existence of global regulation of numerous cellular multi-
protein complexes that belong to the same functional
class.

Results
Identifying gene triplets whose regulatory patterns obey 
logic functions (Figure 1, first step)
We applied logic analysis to expression data to identify
gene triplets whose regulation obeys one of the eight pos-
sible logic functions (Additional file 1: Table S1 and Fig-
ure 3). The analysis was applied to data of Gasch et al.
([10]), which measure the expression of all Saccharomyces
cerevisiae genes in response to various environmental
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stresses. Initially, we constructed two binary state vectors
for each gene. One vector describes whether the gene is
repressed and the other vector describes whether the gene
is induced across of the microarray experiments; vectors
were retained for analysis only if induction or repression
was seen in at least 10% of experimental conditions (see
Methods and Figure 2). This resulted in 2,969 (~ 25%)
gene vectors, 45% of which represent the induced state
while 55% represent the repressed state. Next, using these
binary vectors, we analyzed all possible gene triplets. We
identified about nine million potentially significant gene
triplets, based on the associated uncertainty coefficient
(U) and P-value. These thresholds were chosen to filter
out triplets that are only related by pairwise correlations
between two genes (see detailed description in Method
section). Some of the gene triplets were significant under
more than one type of logic function. In these cases we
assigned to each gene triplet the most significant logic
function as defined by the highest U value. This assign-
ment reduced the number of non-redundant triplets for
further grouping and analysis to 5,241,065.

The eight possible types of triplet logic relationships
described earlier [7], occur with different frequencies
(Additional file 1: Table S1). The four types (A AND !B, !A
AND B), A XOR B, A OR B, and A AND B represented
53.5%, 30.6%, 15.2%, and 0.7% of the cases, while the
remaining four types almost never occurred. We believe
certain logic types are rare because the binary microarray
data we are using is relatively sparse (it contains many
more zeros than ones). As a result, only logic functions
where f(0,0) = 0 are observed often, whereas functions
where f(0,0) = 1 are not. Additional file 2: Figure S1 con-
tains example heat maps of triplets of genes that obey the
AND and XOR logic functions.

Mapping gene triplets to multi-protein complexes (Figure 
1 second step)
We mapped all gene triplets to complexes as described in
Methods. We identified 40,521 triplets that were com-
posed of genes that mapped to multi-protein complexes.
Of these triplets, 412 (1%) mapped to a single multi-pro-
tein complex, 40,109 (99%) triplets mapped to at least
two different complexes and about 90% mapped to three

Analysis outlineFigure 1
Analysis outline. We first apply logic analysis to microarray data to identify gene triplets whose regulation obeys one of the 
possible logic functions such as the AND function: C is regulated iff A and B are regulated (the functions are described in detail 
in Additional file 1: Table S1). Next, using a curated set of protein complexes [19,32], we map gene triplets onto complexes. 
Finally, we identify triplets of complexes and calculate their significance (see Methods section). The analysis enables us to pre-
dict coordinated regulation of these complexes.
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different complexes. As mentioned above, the U value was
used to filter out gene triplets that are associated only by
pairwise correlations (see Methods). That most gene tri-
plets mapped to more than one complex supports our
choice of this threshold.

Grouping gene triplets that map to three complexes 
(Figure 1 third step)
Next we grouped together gene triplets obeying the same
logic function and mapping to the same set of three com-
plexes (Figure 1, third step). We restricted our analysis to
two logic functions: XOR and AND. These two functions
were abundant in our data and were judged to have more
intuitive biological interpretations than the other logic
types (Figure 3). The logic function AND yields 397 tri-
plets of protein complexes. For each triplet of complexes
we computed the significance of the finding based on the
number of gene triplets that map to these complexes and
computed a P value using the hypergeometric distribution
(see Methods section). Out of these 397 triplets of protein
complexes, 102 (25.7%) are significant (P ≤ 0.05 adjusted
for Bonferroni correction). A total of 15,915 triplets of
protein complexes were related through the logic function
XOR, of which 729 (4.6%) are significant (P ≤ 0.05
adjusted for Bonferroni correction).

The significant triplets of protein complexes related
through logic functions AND and XOR include 69 and

159 different protein complexes which are supported by
230 and 3,775 gene triplets respectively. The genes com-
posing the triplets encode a subset of the subunits of each
complex. This may be explained by the incompleteness of
the microarry data (missing measurements in specific
experiments) and the strict parameters we choose. To
check if the subunits we identify are representative of the
entire complex, we calculated the expression coherence
between the subunits of a complex. We found that in all
complexes that appear in our study, the expression was
indeed coherent (Additional file 3: Table S2).

The list of all triplets of protein complexes which have
coordinated regulation (under the AND and XOR logic
functions) appears in Additional files 4 and 5: Tables S3
and S4. Below we discuss examples of the triplets of pro-
tein complexes whose synchronized regulation has been
previously described in the literature, as well as novel pre-
dictions of co-regulation of complexes.

Regulation of protein translation, autophagy degradation 
and N-linked glycosylation - examples of triplet complexes 
that have coordinated regulation obeying the AND logic 
function
Figure 4 is a schematic representation of various multi-
protein complexes involved in processes related to trans-
lation. The figure caption provides a brief description of
the function of the complexes whose co-regulation is
described in the following sections.

Ribosome large subunit - 60S, eIF2B initiation factor and 
RNA polymerase I/III
Our results reveal that the transcription of the 60S ribos-
omal large subunit decreases if and only if (IFF) the tran-
scription of the eIF2B initiation factor AND RNA
polymerase I/III are decreased as well. The three subunits
of the RNA polymerase, RPB5, RPC19, and RPO26 that
participate in this logic relation are components of both
polymerase I and III. Figure 5(A) shows the subset of
experiments (outlined rectangle) where the transcription
of all three complexes decreases. Indeed, co-regulation
between complexes involved in ribosome biogenesis
(RNA polymerase I/III) and protein translation (eIF2B ini-
tiation factor) was shown recently to be mediated by TOR
signaling, as reviewed in Wullschleger et al. [4]. In
response to nutrients, TOR induces ribosome biogenesis,
translation, and nutrient import, whereas stress condi-
tions repress these functions [4]. Our results suggest the
stress conditions tested in these experiments inhibit TOR
signaling and this inhibition leads to the repression
(either direct or indirect) of all three complexes. ChIP-
chip data reveal that the genes encoding the subunits of
Ribosome 60S, RNA polymerase and eIF2B are bound by
overlapping sets transcription factors. Genes encoding
RNA polymerase I/III subunits and ribosome large subu-

Conversion of gene expression data into induced/repressed binary vectorsFigure 2
Conversion of gene expression data into induced/
repressed binary vectors. Based on defined cut-offs, we 
determine whether each gene is induced or repressed or 
non-regulated in each condition. Next, we derived for each 
gene two vectors: induced and repressed state binary vec-
tors. In the induced state binary vector, we assigned one to 
all experiments where the gene was induced, and otherwise 
zero. In the repressed state binary vector, we assigned one 
to all experiments where the gene was repressed, and other-
wise zero.
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nits are bound by the ABF1 transcription factor (ARS-
Binding Factor 1), whereas genes encoding the RNA
polymerase I subunit and the eIF2B subunit genes are
bound by RPN4 (Regulatory Particle Non-ATPase) and
DIG1 (Down-regulator of Invasive Growth).

Ribosome 60S and 40S subunits and the autophagy related 
complex
We find that the transcription of the 60S ribosome large
subunit decreases only when the transcription of the 40S
subunit decreases AND the transcription of autophagy
related complex increases. Figure 5(B), shows that in a
subset of experiments the transcription of the autophagy-
related dimer complex Aut2P/Aut7P is increased when the

transcription of both of the ribosomal complexes, 40S
and 60S is decreased. Although the relation includes only
one subunit of the 60S ribosomal complex, it is known
that ribosomal subunits are strongly co-expressed (aver-
age correlation coefficient of 0.87 (± 0.08) of 86% of pos-
sible pairs within the ribosome). All other subunits of the
60S ribosome were assigned lower scores due to incom-
pleteness of the microarray data in the specified experi-
ments and the strict parameters we choose. Aut2P/Aut7P
has a role in protein degradation while the two ribosomal
complexes 40S and 60S have a role in protein synthesis.
That these two complexes have opposite function likely
explains their opposite transcriptional regulation in this
subset of experiments (outlined rectangle). In this exam-

Illustration of triplet logic relationships in which the regulation of a third gene is strongly correlated to some combined regula-tion of two other genesFigure 3
Illustration of triplet logic relationships in which the regulation of a third gene is strongly correlated to some 
combined regulation of two other genes. Each circle represents a single mRNA profile readout and its position indicates 
whether the expression of A and B are regulated. A filled circle implies that C is regulated, while an empty circle implies C is 
non-regulated. Tables I. and II. describe the two logic patterns that were analyzed in this study. Below each table is the logic 
statement and associated text. Each gene can be in three possible states: induced, repressed or unregulated. This expands the 
number of logical relationships we see. I.) The case of regulated expression described by the AND logic statement. We have 
eight possible different regulatory states for logic statement AND as shown in the figure. II.) The case of regulated expression 
described by the XOR logic statement. For this logic statement we also have eight possible regulatory states.
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ple as in the previous one, the TOR signaling pathway is
known to mediate both the translation and the autophagy
processes. When the cell experiences stress conditions, the
TORC1 complex is inhibited. This inhibition leads to
decreased transcription of genes involved in translation
and also leads to activation of the autophagy process
[4,5].

We identified TFs that bind genes of both the 40S and 60S
ribosomal complexes, but could not identify TFs that also
bind genes encoding the Aut2/Aut7 complex, possibly
because we employed strict filtering of the ChIP-chip data
(see Methods). Moreover, we did find that genes encoding
subunits of the TORC1 (TOR complex) and ribosomal
40S and 60S subunits are all bound by the REB1 (RNA
polymerase I Enhancer Binding protein), PHO2 (PHOs-

phate metabolism regulator) and MSN4 (activated in
stress conditions) TFs.

Ribosome 60S, RNA polymerase I/III and 
Mannosyltransferase glycosylation complex
The transcription of the 60S ribosomal large subunit
decreases only when the transcription of RNA polymerase
I/III AND the M-POL II complex are both decreased. Fig-
ure 5(C) shows coordinated reduction in the transcription
of the ribosome complex, the RNA polymerase complex
(I/III), and the M-POL II complex in a subset of stress con-
ditions (outlined rectangle). The M-POL II, mannosyl-
transferase II is the third complex enzyme in mannan
modification of N-linked glycan processing (elongating
the α (1,6) mannan backbone) in the Golgi apparatus.
The importance of N-linked glycan processing is under-
scored by the fact that mannoproteins make up about

Complexes involved in translation, degradation and post translational modification in yeastFigure 4
Complexes involved in translation, degradation and post translational modification in yeast. Schematic represen-
tation of different multi-protein complexes involved in processes related to translation, which were identified in several triplets 
of complexes predicted to be coordinately regulated. RNA polymerase I and III complexes are part of the transcriptional 
machinery that transcribe the ribosome precursors, 35S and 5S, that after proper processing form the ribosome subunits 
(40S and 60S) [35]. The Processome is involved in ribosome processing and maturation, as is the 20S Proteasome [16]. 
The eIF2B (eukaryotic initiation factor 2B) complex is required for protein translation initiation and its regulation [36]. Pro-
tein translation initiation is the first step in protein synthesis and precedes the elongation and termination steps to complete 
polypeptide production. Another complex in this pathway is Aut2/Aut7, authophagy related complex which is active in 
the cytoplasm and responsible for degradation during environmental changes [5,37]. The M-POL II, mannosyltransferase II 
is the third complex enzyme in "mannan" modification of N-linked glycan processing in the Golgi apparatus. The two processes 
of translation and authophagy are both known to be mediated by the TOR complex [4,5].
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40% of the yeast cell wall [11-13]. The substrates of the
POL-II enzyme are N-linked glycan modified proteins
from the ER (Figure 4). Glycosylation in the ER has been
shown to be important for many polypeptides to undergo
proper or complete folding (reviewed in [14]). Thus, we
expect tight regulation of ribosome translation in the cyto-
plasm, followed by modification of N-linked glycans (ER)
and subsequent mannan modification of N-linked glycan
by the M-POL II (golgi). The subset of stress conditions for
which the transcription of these three complexes
decreases (legend Figure 5) are all known to reduce overall
protein synthesis.

We find that the ABF1 transcription factor binds to genes
encoding subunits of all three complexes. Moreover, the
YAP5 basic leucine zipper (bZIP) transcription factor was

found to bind the genes encoding the ribosome 60S and
the M-POL II subunits.

We are unaware of evidence in the literature of coordi-
nated regulation between translation - related complexes
and mannan modification in the golgi. Our analysis
therefore generates a novel prediction supported by TF
binding data and the known biological roles of the com-
plexes.

Ribosome synthesis and regulation - an example of 
coordinated regulation among complexes obeying the 
XOR logic function
One of the significant triplets of protein complexes that
are related by an XOR (exclusive OR) logic function,
involves the processome. The example presented here

Heat maps of examples of triplets of protein complexes predicted to have coordinated regulation obey the AND functionFigure 5
Heat maps of examples of triplets of protein complexes predicted to have coordinated regulation obey the 
AND function. Each heat map represents the mRNA expression level of the subunits of the three complexes, represented by 
consensus vectors (gene names appear on the right hand of the heat map). On top of each heat map is the number of gene tri-
plets mapped to the same set of complexes and the significance of observing this by chance. The x-axis in the heat map indi-
cates the different experiments involved in the analysis, which were optimally ordered for visualization of the logic relationship 
(these appear in the outlined rectangle). The subsets of stress conditions in which the transcription of all three complexes is 
coordinately regulated: (A) variable temperature shocks, amino-acid starvation, and stationary state long term, (B) heat shock, 
hydrogen peroxide, nitrogen depletion, diauxic shift (shift from anaerobic fermentation of glucose to aerobic respiration of 
ethanol), and stationary phase long term (in which the yeast cell's cell-cycle and growth are stopped), (C) heat shock, variable 
temperature shocks and stationary phase long term.
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results from combining two triplets of protein complexes:
processome, proteasome and the 60S and 40S ribosomal
subunits. In this triplet, processome transcription
decreases if the transcription of the ribosome (40+60S)
decreases, XOR the transcription of the proteasome
increases. Prior experimental studies of these three multi-
protein complexes support the proposed logic relation-
ship we find between these complexes. It has been sug-
gested that the rRNA processome SSU (Small Subunit)
complex has two roles in the maturation process of the
pre-ribosome 90S [15]. The first role of the rRNA proces-
some is carried out by its sub complex t-Utp (U3 pro-
teins), which is recruited to the Pol I promoter upstream
of the rDNA gene for transcription initiation. The second
role of the processome is pre-rRNA cleavage of the pre-
ribosome 90S before transcription is completed. In recent
work with mammalian cells, Stavreva et al. found that
complexes associated with pre rRNA processing factors are
ubiquitinated and hence labeled for processing by the
proteasome, a step essential for proper activity in ribos-
ome maturation. One of the factors found to be ubiquiti-
nated is fibrillarin, a yeast NOP1 homolog that is a
subunit of the rRNA splicing processome [16]. As the
processome was found to regulate its own activity [17],
reduction of its abundance may lead to decrease of its own
transcription. The co-regulation of these three complexes
is reasonable given the proposed regulation mechanism
by the proteasome.

Figure 6 presents the consensus mRNA expression vectors
of the three complexes as a heat map showing the logic
relationship between their transcription patterns. The
subset of stress conditions for which the transcription of
both the processome and ribosome decreases (describe at
legend Figure 6) is likely to cause a drop in the "transla-
tion" rate. While the subset of stress conditions for which
proteasome transcription is induced while the proces-
some transcription is reduced might be related to proces-
some degradation by the proteasome [16]. The relevant
subsets of experiments in the second case, include
response to 0.3 mM H2O2 in cells with deletions of stress
induced TFs. In fact, it was shown that high H2O2 concen-
trations results an increase rate of ribosome biogenesis
and maturation [18], substantiating our prediction. Two
transcription factors were found to bind several of the
genes encoding subunits of all three complexes: RAP1
(Repressor Activator Protein) and CBF1 (Centromere-
Binding Factor).

Cellular network of all complexes having different triplet 
relationships with the ribosome
By grouping together all predicted complex triplets that
obey the same type of logic function (AND) and involve
the ribosomal small or large subunits, we were able to
generate a network. Figure 7 shows a subset of this net-

work that includes complexes belonging to the "energy",
"transcription" and "translation" functional classes (as
defined by MIPS functional categories [19]). The figure
shows that complexes belonging to the same functional
classes are regulated in the same direction. In response to
stress conditions, complexes belonging to the functional
class "energy" are positively regulated (induced), while
complexes belonging to the functional classes "transcrip-
tion" or "translation" are negatively regulated (repressed).
This result suggests that the regulation of different com-
plexes may be determined by a master regulatory mecha-
nism that differentially controls multi-protein complex
expression, based on function.

Discussion
In the current study we present a method that offers
insights into how the regulation of numerous multi-pro-
tein complexes is coordinated. In this method, we apply
logic analysis to microarray data to identify gene triplets
whose transcription obeys logic functions. We then map
these gene triplets to consistent sets of protein complexes.
This approach allows us to infer statistically significant
coordinated regulation among triplets of protein com-
plexes. This mapping reduces the complexity associated
with the analysis of gene triplets and increases the signifi-
cance in our triplet identifications.

Typically, in the triplets of protein complexes we identify,
only subsets of experiments are coordinately regulated
among all complexes. Several approaches were previously
used to identify genes which function together in subsets
of experiments. Ihmels et al. developed the "signature
algorithm", a clustering approach, to identify gene regula-
tory modules [20]. Segal et al. identified regulatory mod-
ules and their condition-specific regulators from gene
expression data using a probabilistic method [21]. How-
ever, unlike these previous methods, the present work
identifies higher order relationships between genes. In our
work, we specifically focus on relationships between tri-
plets of genes that are not evident when genes are exam-
ined in a pairwise fashion. To confirm this point, we
analyzed pairwise correlations between the genes in our
triplets of complexes and detected significant correlations
(P ≤ 0.05) only between pairs of complexes but not
among all three. This result was further confirmed by ana-
lyzing the rank of the three correlation coefficients among
all possible pair-wise complex relations (see Additional
file 6: Table S5).

The examples of triplets we discussed demonstrate the
biological relevance of our findings. However it is difficult
to find a suitable benchmark to globally validate our
results since the complexes within our triplets may have
distinct biological functions. One possible way to validate
our approach is to use synthetic data. To this end, we gen-
Page 8 of 13
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erated synthetic triplets by creating two random 0/1 vec-
tors and a third vector that matches one of the logical
combinations of the pair. A thousand such synthetic tri-
plets were generated to match one of the logic functions
AND and XOR and uncertainty coefficients and P-values
for each triplet were calculated using our program. As
expected, all synthetic triplets were identified as signifi-
cant (Additional file 7: Table S6). In order to study the
robustness of our method, we measured the number of
significant complex triplet relations that could be identi-
fied based on random subsets of the gene triplets. We
found that for both logic types XOR and AND, the drop in
significant complex triplets we identified is proportional
to the size of the random fraction of logic gene triplet used
(Additional file 8: Figure S2).

The microarray data we used in this study measures
mRNA levels in yeast cells in response to environmental
changes [10]. A recent study using affinity purification of
endogenously formed ribosmes and the analysis of asso-
ciated mRNAs with DNA microarray shows that in stress
dependent conditions there is a coordination of transcrip-
tome and translatome in yeast [22]. This recent finding

indicates that the coordinated regulation we identified
between triplets of complexes based on the mRNA levels
of the encoding subunits, may also extend to their protein
levels. By focusing on microarray data of environmental
stresses we detected coordinated regulation among com-
plexes centering on the ribosome. Because the ribosome is
responsible for protein translation, a variety of mecha-
nisms are required to regulate its biogenesis, especially
under stress conditions. Similar results were reported in
another study by Levy et al. which found that ribosome
biogenesis genes responded more to changes in the envi-
ronment and less to longer-term changes in growth rates
[23]. Since the ribosomal subunits 40S and 60S (small
and large subunits) are large complexes composed of 57
and 81 subunits respectively [19], the fact that we found
many gene triplets that involve the ribosome is not sur-
prising. Although these two subunits function together in
the translation machinery, they are usually defined as two
separate complexes that are not permanently associated
throughout the entire translation process (reviewed in
[24]). In addition, we find that these two subunits are
independently regulated in different conditions (Figures 5
and 6).

Heat map of example of triplet of protein complexes predicted to have coordinated regulation obey the XOR functionFigure 6
Heat map of example of triplet of protein complexes predicted to have coordinated regulation obey the XOR 
function. For a description of the heat map see the legend of figure 5. The subsets of stress conditions for which transcription 
of both the processome and ribosome decreases: heat-shock, dithiothrietol (DTT), AA starvation, nitrogen depletion and YPD 
long term stationary phase (the rightmost outlined rectangle). The subset of stress conditions for which proteasome transcrip-
tion is induced while the processome transcription is reduced: response to 0.3 mM H2O2 in cells with deletions of stress 
induced TFs (the leftmost outlined rectangle).
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Using all triplets that involve complexes associated with
the ribosome (small and large subunits), we derived a net-
work. We found that all multi-protein complexes that
belong to the same functional class are regulated in the
same direction (either induced or repressed) (Results and
Figure 7). This result suggests that the regulation of differ-
ent complexes may be determined by a master regulatory
mechanism that differentially controls multi-protein
complex expression, based on function.

In a study by Lichtenberg et al. the authors analyzed the
dynamics of complex formation during the yeast cell
cycle. The authors found that in many cases (mainly com-
plexes related to replication transcription and cell cycle)
only a few subunits of each complex are transcriptionally
regulated in order to control the timing of the final assem-
bly. The authors claimed that this general design principle
of "just-in-time" assembly would have an advantage over
"just-in-time" synthesis of entire complexes since only a
few components need to be tightly regulated in order to
control the timing of the final complex assembly [25]. In
our study many of the complexes which we identified to
have coordinated regulation with the ribosome are

involved in transcription, translation and energy. When
we measured the level of co-expression among the subu-
nits of these complexes (Additional file 3: Table S2), we
found that many of them exhibit highly coherent tran-
scription (similar findings reported by Simonis et al.
[26]). This may indicate that for complexes that are active
across larger time scales, transcriptional regulation affects
most subunits. This is different from the regulation
observed in complexes involved in cell-cycle activity
which need to function during specific time frames, and
for which a "just-in-time" assembly mechanism is more
suitable. In another study by Teichman et al. the authors
found that for a few complexes (e.g. Ribosome, RNA
Polymerase, Proteasome) subsets of subunits have con-
served co-regulation between yeast and worm [27]. This
evolutionary conservation may indicate that although
those complexes exhibit highly coherent transcription reg-
ulation, tighter regulation might exist between a subset of
all the subunits.

Conclusions
The importance of studying relationships between differ-
ent modules in a cell such as multi-protein complexes has
been demonstrated in different studies [28-31]. In our
approach we used pre-defined modules in the cell-- multi-
protein complexes-- [1,2] and identified triplets of these
whose regulation obeys logic functions. This approach
allows us to uncover coordinated regulation among com-
plexes. Understanding this regulation allows us to infer
higher-level modes of cellular function and also provides
insight into the biological mechanisms underlying coor-
dination between complexes. Our logic analysis can be
applied to any transcriptional profiling data. Further-
more, this same methodology may be applied to other
types of pre-defined functional modules, such as meta-
bolic pathways.

Methods
Identification of gene triplets whose regulation obeys one 
of the eight possible logic functions
Gene triplets were identified using the entropy measure
described in Bowers et al. ([7,9]). The uncertainty coeffi-
cient (U) we have used is a measure that can relate two
profiles X and Y.

Where H(X) and H(Y) are the Shannon entropies for vec-
tors X and Y respectively, n is the number of states in our
data (in binary data we have two states 0 and 1), and P(i)
is the frequency of each state i in our data. H(X, Y) is Shan-
non's entropy for the joint distribution between genes X
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Sub network of AND relations between the ribosome, energy, transcription and translation related complexesFigure 7
Sub network of AND relations between the ribos-
ome, energy, transcription and translation related 
complexes. The sub-network was derived using all AND 
triplets that involve complexes associated with the ribosome 
(small and large subunits). Each group of complexes in the 
same functional class, as defined by MIPS functional catego-
ries [19], is colored differently. The arrow next to the func-
tional classes represents the regulatory state of the subunits 
of the complexes: green - mRNA repressed, red - mRNA 
induced. Complexes in the "Transcription" category are the 
RNA polymerases I, II and III. Complexes in the "Translation" 
category are eIF2, eIF2B, eIF3, eIF4F translation initiation fac-
tors and GCN1-GCN20 regulate the translation elongation. 
Complexes in the "Energy" category are cytochrome bc1, 
cytochrome C oxidase and Succinate dehydrogenase II, all 
mitochondrial redox carriers.
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and Y, where m is the number of states of the joint distri-
bution between A and B (in binary data we have four
states: 00, 01, 10, 11), and P(j) is the frequency of each
state j in our data.

The uncertainty coefficient U is bounded between 0 and 1.
When U = 0, X and Y are not related (independent) and
when U = 1 it means that X is fully related to Y. More intu-
itively we can say that U is the fraction of information
about X which can be learned if we know Y.

For all possible triplets of genes, we calculated the value U
as the degree to which some logic combination of two vec-
tors, A & B, describes a third vector C.

We also computed P-values which estimate the signifi-
cance of the uncertainty coefficients (U) compared to
those of random triplets. Our random model consisted of
shuffled vectors with pair wise distributions maintained.
Given three genes A, B and C whose regulation obeys a
logic function with a specific U(C|f(A,B)) score, all three
vectors A, B and C were randomized while keeping pair-
wise vector distributions of CA and CB constant.

In this study, we wish to identify instances where a logic
combination of two vectors, A and B, have a significant
U(C|f(A,B)), and P-value ≤ 10-5 to describe vector C, while
the individual vectors A and B alone have lower scores.

We require that the pair-wise uncertainty coefficients
U(C|A) and U(C|B) be smaller by an amount X than the
triplet uncertainty coefficient U(C|f(a,b)). This criterion
was chosen in order to identify gene triplets which are not
related by pair-wise correlations, as in the approach of
Bowers et al. [7]. In this study we chose X = 0.1. Using a
Bonferroni correction, P-value ≤ 10-5 corresponds to a
false discovery rate of 7.3%.

An extra filtering step was added to find more meaningful
gene triplets whose co-expression was identified in a min-
imum of 10 experiments (5%) which match the logic
combination of A and B, f(A,B) and vector C. We also
required that this minimum number of experiments be
higher than the number of experiments where only gene
C or f(A,B) are regulated, to increase our confidence in the
ternary over the pairwise relationships.

As some of the gene triplets matched to more than one
type of logic function, we retained for each gene triplet
only the logic function with the higher U(C|f(A,B)).

More details and exact mathematical formulation can be
found in the Additional file 9: Supplemental methods.

The code for identifying logic triplets was implemented in
C++ running on OS X and is available upon request.

Mapping gene triplets to the same set of three complexes
In order to identify coordinated regulation among com-
plexes using gene triplets, we first mapped genes onto
complexes. For this mapping we used the MIPS curated
complex database [19] and added non-redundant curated
complexes (unpublished data) from the IntAct group
[32]. We removed ambiguous complexes from this data,
leaving us with 324 multi-proteins complexes involving
1,462 genes. In the next step we identified multiple gene
triplets that mapped to the same set of three complexes
(Figure 1, second and third step). The data from MIPS is
based on the concept of complexes as static entities, and
has a low number of subunits which are shared by more
then one complex.

Identifying significant triplets of protein complexes predicted to have 
coordinated regulation
In order to check how significant the complex triplets are,
we calculated the probability of obtaining the same
number of gene triplets by chance using the hyper-geo-
metric distribution:

Where x is the number of gene triplets that map to the
same set of three complexes, N is the total number of gene
triplets whose regulation obeys a logic function, k is the
number of all theoretically possible gene triplets mapped
to the same set of three complexes and M is all possible
(theoretical) gene triplets mapped to any one of all possi-
ble sets of three complexes. We then computed the cumu-
lative probability of observing x or more triplets.

Yeast ChIP-chip data
In order to identify genes that bind the same transcription
factors, we used ChIP-chip data [33]. The data contain
measurements of transcription factor (TFs) target genes
which were identified by binding assays. In order to
extract out the more reliable TF binding data, we have
used MacIsaac et al. [34] filtered data which identifies
genes with conserved sequence elements among three Sac-
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charomyces species. The subset we have used (P < = 0.005)
includes 116 transcription factors and their 5,752 gene
targets.
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